Multilingual Summarization Evaluation without Human Models

نویسندگان

  • Horacio Saggion
  • Juan-Manuel Torres-Moreno
  • Iria da Cunha
  • Eric SanJuan
  • Patricia Velázquez-Morales
چکیده

We study correlation of rankings of text summarization systems using evaluation methods with and without human models. We apply our comparison framework to various well-established contentbased evaluation measures in text summarization such as coverage, Responsiveness, Pyramids and ROUGE studying their associations in various text summarization tasks including generic and focus-based multi-document summarization in English and generic single-document summarization in French and Spanish. The research is carried out using a new content-based evaluation framework called FRESA to compute a variety of divergences among probability distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NII at the 2006 Multilingual Summarization Evaluation

In this paper I detail the implementation of an extractionbased summarization system that uses sentence clustering and named entity identification as main features for the 2006 Multilingual Summarization Evaluation. I discuss some of the failings of my system, and what can be done to improve it.

متن کامل

PKUSUMSUM : A Java Platform for Multilingual Document Summarization

PKUSUMSUM is a Java platform for multilingual document summarization, and it supports multiple languages, integrates 10 automatic summarization methods, and tackles three typical summarization tasks. The summarization platform has been released and users can easily use and update it. In this paper, we make a brief description of the characteristics, the summarization methods, and the evaluation...

متن کامل

Columbia University at Mse 2005

We describe our participation in the Multilingual Summarization Evaluation 2005. We describe the Columbia summarizers that were used in our submission and discuss the evaluation, drawing conclusions about the performance of our summarizers, discussing the state of multilingual summarization in general and also listing issues that need consideration for future evaluations.

متن کامل

Multilingual Single-Document Summarization with MUSE

MUltilingual Sentence Extractor (MUSE) is aimed at multilingual single-document summarization. MUSE implements a supervised language-independent summarization approach based on optimization of multiple sentence ranking methods using a Genetic Algorithm. The main advantage of MUSE is its language-independency – it is using statistical sentence features, which can be calculated for sentences in a...

متن کامل

Similarity-based Multilingual Multi-Document Summarization

We present a new approach for summarizing clusters of documents on the same event, some of which are machine translations of foreign-language documents and some of which are English. Our approach to multilingual multi-document summarization uses text similarity to choose sentences from English documents based on the content of the machine translated documents. A manual evaluation shows that 68%...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010